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SUMMARY

TAIL BEHAVIOUR FOR SUPREMA OF E14PIRICAL PROCESSES0

We consider~pulti-variate empirical processes X Ct): F '(F (t)-F(t)),
nn

where F Le an empirical distribution function batead on i.i.d. variables

*.with distribution function;.,F, and tcR For XF, the weak limit

of X *it isshown that
n

c (~k)X e < P{sup XF(t) > )1. C(k)) 2 (l e2

t

for large X and appropriate constants c,C. When k -2 these

constants can be identified, thus permitting the development of

Kolmogorov-Smirnov tests for bivariate problems. For general k

the bound can be used to obtain sharp upper-lower class results for

the growth of supX (t) with u
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1. INTRODUCTION

It is well known that the Kolmogorov-Smirnov (KS) statistic, ":

based on a sample from any univariate random variable with continuous

distribution function (d.f.), is distribution free. It is also well

known that in the multivariate situation this is not the case, and

it is to this situation that we shall soon direct our efforts. In

the beginning, however, Kolmogorov (1933) showed that the one-sided

statistic, T - s(x) - F(x)): xcRl}, where F denotes then 11

underlying d.f. and F the empirical d.f., satisfies
n

-2 A2

(1.1) P(T > A) e VA, as nU .

Smirnov (1944) extended this result to the two-sample problem,

Feller (1948) gave it a neater proof, and Doob (1949) followed by

Donsker (1951, 52) and the theory of weak convergence explained it

in terms of the convergence of rn(F -F) to a limiting Gaussian process
n

whose maximum had the tail distribution exp(-2X2).

In the multivariate case, there is no simple analogue to (1.1),

and the best one can hope to obtain is either a limiting distribution

for some specific F, or bounds that may be valid for a family of

F's sharing, perhaps, some regularity properties. The first attack

on this problem was made by Kiefer and Wolfowitz (1958), who showed

that if T(k) is the one-sided KS statistic in k dimensions, thenn s
for some -= (k) >0 and c-c(k) < m ---''"::::'

* -.. -.-. :.
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(k', > . -A2

(1.2) PT ( k ) > A, < ce Vn,. X, F.
n .0

Despite the fact that this bound is obviously very crude, it did at

least suffice to prove the existence of a limiting distribution for

T(k) as n - - . (The full weak convergence of the empirical d.f.n0

to an appropriate limiting Gaussian random field was later established

by Dudley (1966, 67).) However, although Kiefer and Wolfowitz esta-

blished the existence of this limiting distribution, no explicit form

for it is known. Indeed, there is only one non-trivial case where

reasonably accurate bounds are known, this being the case where F

is uniform on the unit square. Here the limiting distribution of

n(F_-F) is that of a pinned Brownian sheet, and fairly close lower

and upper bounds on the distribution of its maximum appear in Goodman -. -

(1976) and Cabana and Wschebor (1982), respectively. We shall have more

to say on this later, when Goodman's lower bound is extended to arbi-

trary dimensions.

In a classic paper, Kiefer (1961) greatly improved on (1.2)

and showed that for all e > 0 there is a c c(k,e) such that

(k) , "'::."2
(1.3) P{Tn > -- ce ( A, F

n

This is a particularly interesting bound since, viewed as a result

on the maximum of the limiting Gaussian field, rather than as a

result on Txk) itself, it is one of the few fore-runners of the
n

general inequality for continuous Gaussian processes, X(t), that

states that for all sufficiently large A

(1.4) Pfsup X(t) > Al < a , a (2e2)-a <..
t

0 . •...



where 02 - sup(var X(t)}. (Fernique (1970, 71), Landau and Shepp
t .

(1971), Marcus and Shepp (1971).) Note that since sup(var~n(F (x)-F(x))])- 1/4,

Kiefer's bound is, today, a simple consequence of (1.4) and weak conver-

gence. Nevertheless, in its time, Kiefer's result was of substantial

interest, since it was, to the best of our knowledge, the first time

that a uniform bound was placed on the maxima of a large family of

Gaussian processes. (The statistical significance of such a lower

bound is that it permits construction of "confidence intervals" for an

unknown F.) Furthermore, Kiefer exploited (1.3) to prove a law of the

iterated logarithm (LIL) for the multivariate KS statistic.

The main thrust of the current work will be to further refine

(1.3), in two directions, and then to investigate the consequences

of the refinement. For a start, we shall show (Section 4) that (1.3)

can be replaced by: There is a c e (k) such that

P T( k )  2 (k -1) e 2 A 2-. - .
(1.5) P(T > Al < CA e , V n, X1, F.

This, as with Kiefer's result, is of interest beyond the KS situation,

since, in the Gaussian process setting, it provides a family of pro-

cesses for which (1.4) can be improved upon. However, we can do better

than just (1.5), and we shall also show that as long as F satisfies

mild regularity conditions, there is a c m c(F) such that

p(k) c)2 (k-1) -2 X,2"-""

(1.6) ' > cA)aCA e2  , V n, X.

The upper and lower bound together enable us to improve on Kieferts

LIL, and to obtain an exact upper-lower class result in its place

(Section 5).
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An upper bound similar in spirit to (1.5) has recently been obtained

by Alexander (1983). Treating a more general situation of empirical
measures, V , indexed by a Vapnik-Eervonenkis class of functions, F say,

n

he showed that

v212 -2).2P{suplv,(f) I > X< 16v e_ V X >8,
feF

where v is a strictly positive integer describing the "size" of F.

Alexander's result, while clearly being an improvement on (1.3),

also gives, for the cases we consider, an enormous over-estimate of

the power of A in the upper bound.
.0

Unlike Alexander, however, we shall have little to say about the

sizes of the constants in our bounds, other than to guarantee their

finiteness. Thus, from the point of view of actually applying the

KS statistic in a statistical setting, these results are of limited

interest. We shall remedy this situation in Section 3, where, for the

two-dimensional case, we shall develop an explicit, sharp, upper bound,

and a reasonable lower bound. The various applications of these results

are spelled out in detail in Brown and Adler (1984). The argument

leading to the upper bound is rather interesting, since it is based

on finding the worst possible F (a task actually performed by 7

Kiefer) and comparing it, via Slepian's (1962) inequality, to all other

cases. The distribution of the maximum in the worst possible case is

what then provides the bound. In fact, this methodology of "comparison"-

will also be used to obtain the lower bound (1.6), and may, in a certain

sense, be considered the main methodological theme of this paper. .

The following section is devoted to peripheral and support

material There we obtain lower bounds for the distribution of the maximum

of the pinned Brownian sheet in'k-dimensions, and some related distributions.

While these do have some intrinsic interest, our main interest in them



will arise from their usefulness aa "comparison distributions". We
0

close this section with notation and some background results.

Let x1,K,.. be'independent random variables with d.f.

F(x), which we assume to be continuous, and which can therefore,

w.1.o.g., be taken to be concentrated on the unit cube Ik [ 0.1 ]k

k

point in Ik by either x or (xi, ... Xk) and introduce the

usual partial order.

___ k

k AR.
For x < y we write Ixy) for the set it [x~y) and use

k
for the indicator function of the set ACI .Thus we can

formally introduce the empirical d.f. F as
n

(1.7) F (x): n- n 1 I Eo)x(Xi

Let WF be the pinned Brownian sheet based on F; i.e., the zero

mean Gaussian process with covariance function

(1.8) R F(x'y) -EfW F(x)W F(y)) F(XAy) -F(x)F(y)g x,y c Ik

where xAy is the coordinatewise minimum (x1Ayl, *. ,A~

Then, as is well known, (k-1l, Donsker (1952); k>l, Dudley ..-

(1966, 67)), An(Fn -F) converges weakly to W F in the space of all

bounded functions on I . Thus, in particular, if

(1.9) nk T nF sup{ifW(F (x) -F(x)): ,Eaki

is the one-sided KS statistic, then
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(1.10) Tk(F) -L 14F ku( e as n ~

This last result provides the obvious motivation for the next

two sectionsB, both of which are concerned with the distribution of

MF.In fact, one can go beyond the central limit result (1.9)

to a much stronger embedding type result. However, since we shall

not need this result until Section 5, we shall introduce it only -

then.
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2. TWO SPECIAL CASES

We consider firstly the distribution of HFwhen F is the

uniform distribution, U say, on Ik We shall, however, require a

slightly more general result later, and to this end let W (k) denote

kcthe (unpinned) Brownian sheet on I ,i.e., the zero mean Gaussian

process with covariance function

kk

Ei w () r (XiAy ~ X'y ER
i- 1

and write aWk for the pinned version of W~k on Ik Then a

0
version of. W can be obtained from W b~y the correspondence

(2.) 0(k) W(k)( -IW(k)(l kc

k
where IxI- n x~ In the general notation of the previous section

&(k)= W~ The result we shall need is

Theorem 2.1L

(2.2) PIaupw W)( > Xjw () ) e-XXw z} (2_,'/(n

aa.. for all X > v. Furthermore, the case w =0 yields

(2.3) P~sup W (X) > X) > e-2X2kt( 2 )nn)

When k-1 (2.2) follows imediately from the reflection principle

(Feller (1971)). When k-2, (2.3) is given explicitly in Goodman (1976),

and (2.2) is also there implicitly. Cabana and Wschebor (1982) and

Park and Skoug (1978) also have (2.2) in the two dimensional case, and



shortly after obtaining the above result for general k, we received

0
a copy of Cabaia (1982) which states the same result with a virtually

identical, albeit more detailed, proof. However, since Caba a's

paper is not readily available, as well as for the sake of complete-

ness, we shall give a brief proof of the theorem.

Proof. The proof proceeds by induction. As noted above, (2.2) is

known to be true when k=l and k=2. Now write a(X,w) for the

conditional probabilit- on the left in (2.2), and define

O(k)].. .
(2.4) h(X,w) = Ps [ > .

Then, after some calculation, it readily follows from (2.1) that

ak(X,w) h.k(X,-w). If we now follow the formulation of Goodman (1976)

of treating the (k+l)-parameter, real valued, W(x) as a Co[0,1]k

valued, single parameter process, then by applying Goodman's Theorem 2

and mimicking his manipulations on page 980, it is straightforward to

establish the relation

le2,X(w-u)) " ..;.
ak+l(Aw) > .(e w)hk(,X,du)

.. .

Exploiting the above relationship between ak and hk thus yields

a recurrence formula for ak+l , and it is now a matter of elementary

calculus to check the induction hypothesis and so complete the proof. _

The second result which, unlike Theorem 2.1, is of little inde-

pendent interest, will be extremely useful for us later. To state

it, we introduce, for eachec(0, ), the d.f. Fc(x) -.Fc(xl,...,xk )

defined by

9'-°"" o°.|
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r i~ if Imin(x )-III > C9

(2.5) F (x) k

- + (2 E) 7r [(xi-k+c)A2c] otherwise.

Despite its somewhat forbidding appearance, F Cis a rather simple

d.f., distributing total probability 2c uniformly on the cube

kk

uniformly on that part of the main diagonal of I disjoint from A.

Now let *(u,v) denote the two-dimensional normal density

with zero means and covariance matrix E defined by0

(2.6) [( £) ( g+c) QI0

Furthermore, let E be the matrix identical to Z but with theC-
sign of the of f-diagonal entries reversed, and let 1 be the two-

dimensional normal density with zero mean and covariance matrix

For each positive c and X, and integral k, set

(2.7) M~(X: f 2E f 2eX [(u-2EcX)(v-2eA) /E i~uv/ddv

and write Q C M for the normal quadrant integral

(2.8) Q£ AL) - - f ~(u, v) dv

We can now state
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Theorem 2.2. For every X > 0

(2.9) Pfsup W, (x) >. X, >jX + e (A)~
1k E

In particular, there is a finite c -c(ck) bahh that for all X > 0

(2.10) P~sup W F(x Al>c ke

Proof. We shall obtain only a lower bound for P~sup(W F (x):xeA)E> X),
E

which, I fortiori, will provide the lower bound required. Let a. and b

be the two extremeR corners of A, i.e.. a -( I-,.. -)
E C .

b E -,.. c Then define the process Z(x) on I by

Z =) (2c) W (a +2ex) -(I-jxj)WF (ac) - xiW* (b )
F FE F E P£

Then it is straightforward to check that Z(x) is a standard pinned

sheet on I k as In (2.1). Consequently, for (u,v) < A, it follows

that

(2.11) P~sup WF (x) > X WF (as U, uWF(bc) v1
AE FC C F

W x- (A-u)fP'7W) > u!v

But ti-is is precisely the probability defined at (2.4). Thus, using

the equivalence noted there between this probability and ak we

can bound it by Theorem 2.1. Using this bound, (2.11), and the fact

that the joint density of <WF (ac) WF. (b C)> is given by *'c
E C

we obtain



(2.12) P{sup WF£(X) >. (} > > A or WF (be) > X, +

Ikkl (Fe( v C :" i: ::

-) /  n(u,v) dudv
-~ - 2"":,

Consider the integrand, and make the transformations x=u-X(1-2c),

y-v-X(l-2e). Tedious but straightforward algebra yields that it is

equivalent to

__2 2 1.-i

e 4€(x,y) E [(x-2cX)(y-2cA)IcJn/n!
n-0

Substituting this into (2.12), changing the bounds on the integral, 6

and replacing the rightmost probability by Q (X) now yields (2.9),

as required.

To obtain (2.10) from (2.9) simply take X large enough so that -

the dominant term in the sum in i ,k is O(X2(k - 1)) Then choose

an appropriate c to make (2.10) work. This completes the proof.

In what follows wL shall be primarily interested in the asymptotic

lower bound (2.10), which will be used to prove results of theoretical

interest. The explicit expression (2.9) has, however, some practical

value for statistical hypothesis testing, and this is discussed in

Brown and Adler (1984), where the bound is actually tabulated for a .

number of cases.

In general, we shall use Theorem 2.2 to form a basis for comparison

between the maxima of pinned sheets based on different d.f.s. The .. "

crucial result that underlies all these comparisons is a basic result

of Slepian (1962), which we record here as

S"' ,=



F'"".
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Lemma 2.1 (Slepian's inequality). Let X and Y be two zero mean

Gaussian processes defined over some set ,T. If var X(t) var Y(t),

V t c T, and

(2.13) cov(X(t), X(s)) < cov(Y(t),Y(s)) V a, t E T

then

(2.14) P{sup X(t) > X) > P{sup Y(t) > X} vY
T T

Note that Slepian's inequality does not extend to comparisons of

Jsup xj and Isup YI, and so the sharp results of the following section

are not easily extendable to the two-sided KS statistic. Nevertheless,

we can always use the fact that for symmetric processes

(2.15) P{sup X > X) < P{sup IXJ > X) < 2P{sup X > X)

to obtain bounds for the two-sided case. For the bounds of section 4,

in which constants are not identified, this is clearly sufficient.

We now consider, as an example of our "comparison methodology"

the two-dimensional case.

~0

_S
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3. THE TWO-DIMNSIONAL CASE. -.

2
Throughout this section, we shall denote points in I by

(x,y), and F will denote a continuous d.f. on 1 2 possessing uniform

marginals. The degenerate-distribution, uniform on the negative

slope diagonal x+y-1 will be denoted by G(x,y); i.e.,

(3.1) G(x~y) =(x+y-l)+ (j,'Y)C 2

Our aim in this section will be to devise good (non-asymptotic) 7

bounds for P{sup W F > X I.We start withA

Theorem 3.1 For any two-dimensional d.f. F satisfying the above

conditions, and for any A~ > 0

(3.2) P~sup WF > X) < P{sup WGx > 'XI

Furthermore

w2

(3.3) P{sup WG(x) > I<Z(U 2)Cn

2 2.Proof. Let m be the mapping from I into I defined by

(3.4) G(m(x)) -G(m 1(x), m2 (x)) -F(x). V x CI2

(3.5) m2(x) -m(x) x2 -X 1 VxI

We must check that m is well defined. For given x, note that mWx
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lies on the line I : -(xl + V,x2 + P),v pcR, and G(x 1 + P'x 2 + J)

is clearly non-decreasing in P1 . Indeed, (3.1) and a little elementary

geometry show that G(x1 + Px 2 + Vi) is strictly increasing for

(3.6) 11(l-x -x2) <P 1- (xl v x2)

When p- lxx),then G(x 1 1z,x +v) 0 < F(x). When P1'-l(x 1

then G(x1+p, x2+y) - 1- I.xl - x21. Suppose, w.l.o.g., that x1 >x 2.

Then ( 1 +px+ ) lx+(lx). Applying these facts,

together with the uniformity of the marginals of F and the natural

monotinicity of F ,we obtain .

G(x1 + U.x+ V') F(l,x2 + (1-X1) F(x)

Thus, within the range (3.6) there is, by the continuity and strict *

monotonicity of G, exactly one P satisfying G(x1 + V'x2 + vi) F(x).

Hence the map m is well defined.

Now consider the processes WF and WG We shall compare

sup{WF(x) :XCI 2  to sup{WG(x): xcm(1I < sup{W(x): xeI2 L Note

firstly that for xcI 2

(3.7) var W F(x) -var W G(m(x))

a simple consequence of (3.4) and (1.8). Consider

(3.8) cov(WF W. W (y)) -F(XAy) -F(x)F(y) .-

Suppose XAY x. Then
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*F(xAy) -F(x) m (m(x)) >G(m(X)Am(y))

Thus, in this case (as in the analogous case x~y -y)

(3.9) cov(WF(x)IWWF~) cov(WG lnx)),WGWYm~y .

If we can also establish (3.9) in general, then we shall have completed

the proof of the first part of the theorem, viz. (3.2), since (3.7)

and (3.9) are precisely the ingredients for Slepian's inequality.

Thus, consider (3.8) fcr x,y with x 1> Y3. and x2< y2 .(The

remaining case is handled analogously.) Then x~y -(yl,x 2). write

W- (m.l(y), m2(x)). There are three possible cases to consider:

mWx .1 w > m(y), m(y) w > mWx), w -mWx Am(y) .We sh all cons ide r

only the third case explicitly, but the reasoning is valid for all the

cases. Note (drawing a picture helps to see the inequalities) that

F(xAy) F= V

[ F(6) (- ( 1 1  v [F(y) .(y 2 -x 2 )] by marginal uniformity

h{ F(x) + F(y) -[(x±-x2) -(yl1 2 )J 1

- {G(m(x)) + G(m~y)) -(lx-2x)(m~)m()]

by (3.4), (3.5)

>512x) + 1(y)-1.by (3.1).

Hence, if m2 (x) + ml(y) -1 > 0 then the above yields

(3.10) F(XAy) >G(in()m()

1(y),Yx0



... . .-.. ..
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On the other hand, if m2 (x) + m1 (y) - 1 < 0, then G(ml(y), m2 (x)) 0
20

and so (3.10) is trivially true. Thus, in general,

.F(x~y) >G(m 1 (y), m2 (x)) G(w) -G(M(X)AM(y)) *-

From this we immediately obtain (3.9) and the proof of (3.2).

It remains to establish the inequality (3.3). To this end, let

W(t), t e [0,1J, be a standard Brownian bridge with covariance functionr
-.6

(3.11) E{(t)(s) = (sAt) - at

2/

Define the two-parameter field X on 12 by

§(Cx) W(l-x2) x 1+x2 -1 > 0

X(x(_,x 2 )-

X+x -1 < 0
1'x2

Then comparison of rovariance functions shows that X is a version

of WG Thus

(3.12) P{supWG(xl,x 2 ) > X}1 P{supW1(.,-.(l-x 2 ): x 1 +x 2 - > > 0] > }i

0, 0

P{SeP[w(s) - W(t): a >t] > X1• .

_P sup%(s) -(t: a, t [0,13> •A)

S P{[sCup(%(s))+ + sup(%(s))-] , X>
- o,1] o,1]

But the last probability is known exactly, having been determined in

Kac, Kiefer and Wolfowitz (1955, equation (4.6)), and is precisely the

sum given on the right of (3.3), and so we are flnished....

°-9 -"-
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Remark. Note that the two inequalities following (3.12) are far from

sharp, and a little reflection shows that each inequality, while

retaining a bound of the right order of magnitude, "costs", roughly,

a factor of two, i.e., we expect that the final upper bound is too

large by a factor of four. Indeed, comparison of the general upper

bound (3.3) with the specific lower bound in the uniform case, (2.3)

with k=2, shows, for large A, a difference between the bounds of

precisely a factor of four. Clearly, a much better upper bound than

(3.3) is given by P sup[Cs) -(t): 0 < t < s 1 > 1, (c.f.

(3.12)), but this seems hard to calculate. However, numerical estimates

of this probability are easy to obtain via simulation, and some are

listed in Brown and Adler (1984). Furthermore, calculation of (3.3)

and comparison with (2.3) for moderate A , say X E,331

yields that (3.3) overestimates the true probability by less than

a factor of four, and that the KS test statistics derivable from

(3.3) are in fact quite useful. For details see Brown and Adler (1984).

We now turn to the more difficult problem of finding a uniform

lower bound for the two-dinensional case. Here we shall need to

impose assumptions on F in order to avoid degeneracies. (e.g.,

F concentrated on the diagonal xl-x2 , which reduces to the one-

dimensional case.) Let l1xil - 1xlI + [x2j denote the "city block"

norm of X. Then we shall prove

2Theorem 3.2 Let F be a d.f. on I with uniform mar inals. such

2 -"that there exists an x EI , a neighbourhood N of xo , and a
- 0

constant 8 c (0,1) satisfying

9 ".
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(3.13) F(xo) - -
0-

and

(3.14) If x,ycN and'either xlYl 'or x2-Y2  then IF(x)-F(y)I

Then there exists a finite c - c(F) > 0 such that

c 2 -2,12'.'i-",'

(3.15) P{supWF(x) > .1} > cA2 •-'.

Remarks. Theorem 3.2, as it stands, is a special cpse of the more general

result Theorem 4.2. What makes it of special interest, however, is

the fact that in two dimensions it is possible to obtain estimates for .

c. We shall discuss these at the end of the proof. Furthermore, the

two dimensional case turns out to be somewhat simpler than its higher

diwensional analogue, thereby making its proof more transparent and

interesting.

It is clear that the conditions of Theorem 3.2 hold if F has

a density bounded away from zero. However, absolute continuity is not

a requisite of the theorem, and it is easy to build examples of non-absolutely

continuous F satisfying (3.13) and (3.14). A trivial example is the

extremal case, (3.1). "

Proof of Theorem 3.2. The aim of the proof will be to compare WF

with WF , where F is the distrtbation function (2.5) of the

preceding section, and then use Slepian's inequality and Theorem 2.2

to complete the argument. The comparison will only be possible over

a region in the neighbourhood of (h) in the domain of W. together 0
C

with a subset of N in the domain of WF , but it will turn out

that such a comparison will suffice for our purposes. We start by
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building a mapping between the above two neighbourhoods, and by

noting that the reader's path through the forthcoming algebra will

be considerably simpler if he follows the'argument graphically with

pen and paper.

2
For xcR ,let x be the projection of x on the diagonal

{x: xl-x2 1 ,i.e., x~ has both coordinates equal to 11(x +x2) Define

(3.16) d ON(1): =inf{1IX1x1, x O)

Let e d0/3 and define a map m from A. into N satisfying

(3.17) m(y) -iji~y) x x0 -2 0 + (-)~

and

(3.18) F (y) F(m(y))

where F is defined at (2.5). It is necessary to demonstrate that

this map is well defined and one-one.

To this end, fix yeA. and let m0 o xo + (y-y)/B .Also,

let M. M m0 + l.(l,l), for real Ui. Now note that, by (3.14), F(m)
0'

is strictly increasing in V as long as m,,EN. Furthermore, if

ii- /B, then m1  xo since (y-y), E for yeA . Similarly,

i-0-/B implies m < x0 Consequently

(3.19) F(m )_ F(m /)

Now consider for what values of pwe shall have M EN

iI

for Jul < 2dBO. Now take u >W, with <iivl' 2E/B Then. by

(3.14),

F(m )-F(m ,) > 00i,-u')
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But now it follows that there is a unique PJ[-2e/0,2c/S] such that

F(M) F (y) , since yeA implies -C < F (y) < 1,+ c. L~et

m(y) m i for this v'. Then clearly (3*.18) is satisfied, as is (3.17),

so that mn is well defined for each 'yeA .Furthermore, the above

argument also establishes that m. is one-one. This completes the

first part of the argument.

Let m(A.) be the image of A. under the mapping mn, and

consider WF W for xcin(A ).Clearly, for yc-A, (3.18) and (1.8)

imply

(3.20) E{W2(m(y))} E{W2 (y))
(3.0)F F--

L Now take y <y, y 2eAc. Then FMyl) <F,( 2  and so

F~inyQ)C F~~y2 ) .Thus (1.8) immediately yields

(3.21) E(W (in(Y,))W,(m(y 2)) I=F(m(y1 ) Ai(y 2)) -F(m(y) F(m(y 2 ))

SF(in(yl))AF~my) F(m(yl))Finy)

- F(y) F(y2)F~) m2)

-E(W F (y1 )w~e(y 2 ) }

By symmetry, (3.21) also holds for y y2 .Now suppose y3 y1 y is

distinct from both y1  and g2 . et x uin(y1), 1-1,2, and

x wX AX . Observe, either geometrically or algebraically, that
312

(3.22) 1yl-Y311 + 11Y2-Y311 - I(yl- 1̂) -(y2-'211I

Thus, since F has uniform inarginals, and y £A.
C
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(3.23) Fr(yl) + Fe(Y 2) - 2Fc(Y 3)

( + E)(11y1-y311 + 11y2-Y31)

- ( + C)II (y1-yl) - ( 12 2)I •

Now suppose that x2 
> x1 .. We shall show that this is impossible.

Write x4  ((x1)1, (x2)2) . Then, by geometry and ascumption (3.14)

..
F(x2) - F(xl) = F(x2) - F(14) + F(x4) - F(xl)

> {llx2-x411 + IIx4-xII. .

> llx2-xl ) - 1(2-)II-

- II (Y2- - ('-i) I I.'1119

the last line following from (3.17). The above and (3.23) now yield

0 < F(x2) - F(x1) = Fc(Y 2) - Fc(yI)

< Fc(y 2) + Fc (y1) - 2F(y 3)

< ( + c){F(x2) - F(xI)-

which, since c < , is clearly untenable. Thus we cannot have x2 x

nor, by sy metry, xl > x2 . Consequently, x =1.l^2 is distinct S

from both x and x2 Then, again by geometry, assumption, and

(3.22), we have

F(x1) + F(x2) - 2F(X3) _> B{I 1x1-x31 I+11x 2-x3J I-

- B{l(x1x 1) - (x2-'2)1}

" II(y1i1) - (y2-i2)I'

" Y17111 + 11Y2-,211
(F (y )+F- (y2)-2F (y3)

> F (yl)+F E(y2) -2F (y3)
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Thus, since F(x) F (y i-1,2,-
CS

F (Y3) F(m(Y3 )) > F(x 3)

From this it immediately follows that for all y ,y2 c A

EWF (Yl)WF (Y2)1 > E{WF(m(Y))WF(m(y2 ))}
C £

with strict inequality if Xl^X 2 # x i , i=1,2. But this is all we .

need, for by Slepian's inequality,

P{sup W (x) > X' > P{sup WF(x) > X) - - -

12 m(A) e

> P{sup WF (x) > X}.
A C

r

The last probability is precisely that given by the RHS of (2.9),

which, as we have already noted, is asymptotically of the form

-2 X
2

CX2 e This completes the proof of the theorem.

We close this section with two remarks. The first on the constant

c of Theorem 3.2 , or, to be more precise, on an exact lower bound for

P{sup WF(x) > X)}. It is clear from the argument that such a bound
FS

is given by Q (X) + 2,(X), with c de/3 • (c.f. (2.7), (2.8),

(3.16).) If we consider the case of F uniform, the optimal choice

of dS, so as to maximise e, is d - 0 - 11(2r2). yielding e 0.04.

This is, of course, much smaller than the £ 31 that a sharp argument - . -

would give. Nevertheless, the numerical consequences of this lack

of sharpness are not quite as bad as one might imagine. For details,

see Brown and Adler (1984). " *-1. " T
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It is interesting to note that there are "1 -dimensional" d.f.'s

that yield supremum tail probabilities strictly between the one-

-2X A2 2 2Xdimensional O(e-  ) and two-dimensional 0(A2e 2 2). As an example,

2
take H to be the d.f. on I with density

(3.24) h(x,y) 2 (xy) < ( ,) or (x~y) > ( , )

0 otherwise.

Clearly, H fails to satisfy the conditions of Theorem 3.2. However, S

it is a relatively easy exercise to estimate the exceedence probabilities

of WH, using the fact that the two processes

WI(x,y) := Y'2{WH(x/2, y/2) - W ( , )1

W 2(x,y): = r WH(l-x/2, 1-x/2) - (k
2 -2)-2

(x,y) c 12 , are both versions of the pinned Brownian sheet W(2

This fact, together with Theorems 2.1 and 3.2, conditioning on and

then integrating out WH( , ), readily yields

(3.25) P{sup WH(X) > X = O(Xe 2 2 ) ,

12

thus indicating that non-even powers of A in tail bounds cannot be

excluded. (Indeed, there is no good reason even to exclude non-

integer powers, as these do occur as tail bounds for other classes

of Gaussian processes; see, for example, Section 12.2 of Leadbetter,

Lindgren and Rootzen (1983).)

'. 9 '% *
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4. BOUNDS FOR THE GENERAL CASE

Our aim in this section will be to obtain, in k > 2 dimensions,

bounds of the same general form as those we have just obtained for

two dimensions. In particular, if F is a continuous d.f. c Ik

with uniform (one-dimensional) marginals, then the two central results

are as follows:

Theorem 4.1 There exist constants ck, k > 1, independent of F and X ,

such that for F as above

sW2(k-l) -2 X2

(4.1) > P'u-x e A

Theorem 4.2 Suppose, in addition to the above, there exists an x CI ,

a neighbourhood N of x, and a constant > > 0 satisfying

(4.2) F(xo) =,
0 -

(4.3) Throughout N, F possesses continuous first order partial

derivatives *i: = aF/ax satisfying

inf inf gii(x) > >0. 0
i N

Then for each such F there exists a constant c c(F), independent

of A such that

2 (k-1) e-2X 2 -2:'-
(4.4) P(sup WF(x) > X} > c-.-- e.

-Both of these results, while clearly indicating the correct order _

of magnitude behaviour of the tail of sup WF , are considerably weaker

9 •°
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than their two-dimensional counterparts, since the style of their

proofs will be such that it will be impossible to closely monitor

inequalities so as to estimate the constants of the bounds. Conse-

quently, the statistical value of Theorems 4.1 and 4.2 is somewhat

limited. Nevertheless, they have interesting probabilistic conse-

quences, as we shall see in Section 5, as well as being of intrinsic

interest for the reasons mentioned in the introduction.

We shall prove Theorem 4.1 first, by a method totally different

from that used for the two-dimensional upper bound. There, recall,

the argument was based on finding a "worst possible F". In dimensions . --

three and above there seems to be no analogous unique worst F, and

the proof is forced to take a different route. We start with some

necessary lemmas, for which we define the following event for

k
x <x^ and X>0

(4.5) A = A(Xx 2 ,X): {sup(WF(X): x1  x < x2 ) > ,"

Also, write

(4.6) 02 (x): - var(W (x)) -F(x)[l-F(.)].
F

Lemma 4.1 Take <t < ,1 .xX 2 I xI < x2  and > 1. If

(4.7) a < F(xI) < F(x2) < 1-a,

and

(4.8) F(x2) - F(xl) < a2T 2 ,

then

(4.9) P{A) < 0(lexp(-X2/2C2(xl)),

where, for any function f: R R,.

f(a) < 0(a) <.>lim sup (f(a)/a) < K <
a-,-
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Proof. Since it is generally difficult to work with the maxima of

the pinned sheet WF, the main idea of the proof is to relate WF to _

its unpinned version, ZF, where ZF is the zero mean Gaussian field
on Ik satisfying

E{ZF(x) Z (y)) = F(x-y)

Then Z (x) - F(x)ZF(1) is a version of WF , so that using this versionFFF

in all that follows, we can write :6

(4.10) WF(x) = V(x) - [F(x) - F(x1 )]Z(1) xE[xlx 2 ]

where

(4.11) V(x) := W(x1 ) + [ZF(X)- ZF(x1)] xE[xlx 2 ]

The idea of the proof is that for A large. (4.8) implies the second term

in (4.10) will be small, while V(x) will be close to W(x1 ).

Note firstly, by direct calculation of covariances, that WF(x) and

ZF(1) are independent, so that with A as at (4.5)

(4.12) P{A} = 2P{A and ZF(l) > 01

Thus, by (4.10)

(4.13) P{A} < 2P{ZF(1) > 0 and sup V(x) > Al
[x1 ,x2 1 -

<2{sup V(x) > X}
[x I ,x 2 ]

To bound the last probability, write V(x) = W(x) + U(x)., where

U(x) : F(X) - ZF(xl)

R is independent of W(xl). Suppose we can show the existence of a finite -A
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c>O0 such that for all nl>O0

(4.14) P{ sup U(x) > TOl < c(l n /a1 --l - 2 X2/a 2

211

for notational convenience, we have

P{AI < 2P{W(x) A) + fP{supU(x) >A -w~dPWcx 1):s w}

-1U2 A -1 2(X-w)2- W2

< CA exp(-I;k )+ f(l + A -w) exp{-- }w
-0a 2  2a2

on using standard inequalities for the first probability, and (4.14) for

the integrand, after noting A > 1 and a < 1/2 .Standard integration

-1 -A;2 /2C, 2
yields that the integral is OCA e ) This proves the lemma.

Thus all that remains is to establish (4.14).

A straightforward application of the multivariate "reflection principle"

yields.

P{ sup '.U(x) > Al < 2kP{U(X >) X

-22

By (4.8) varU(x) aA , so that (4.14) now follows by standard

inequalities.

Without much extra work we can also prove a stronger version of

the preceding lemima. Under the conditions of the lemma, we have,

for x 1 x 2  that

0 2 (x) >a
2

-5ct
2 /(4 A2)



28

Consequently

A),2  ).2  ),2  . 2

20
2 (x) 2o2 2[Ci 2 -5a 2 /4X2 ]  2a2

5a2/4

202 [02-5ac2 1 2

Thus lemma 4.1 immediately yields

Lemma 4.2 Under the conditions and notation of Lemma 4.1

(4.15) P{A} < O(lexp(-X2/2a2))

where 2 = inf{o2(x): xI < x<x 2 }.
1 <

To state the next lemma define the event

B {sup(WF(x): F(x)< a or F(x) > -o)> X

Lemma 4.3 Let ac(O,), and (l,(4a(1-6)) - ) Then

(4.16) P{B} < O(exp(-2$X2)) "

Proof. This is a straightforward application of (1.4), on noting

that F(x) <a and F(x) > 1-ca both imply (20 2 (x)) - 1 < 2[4 c(l-a)-1

We now turn to the -

Proof of Theorem 4.1. The idea of the proof is as follows. Divide

k
I into a large number of small cubes, and separate these cubes into

two groups. In the first group put those cubes over which WF has

small variance, and use Lemma 4.3 to show that the maximum of WF

over this group i&. asymptotically unimportant. For the second group,

use Lemma 4.2 to bound the (distribution of the) maximum of WF over

each cube, then count how many such cubes there are, and thus obtain

a final bound.

We now spell out the proof in detail, and note that the only

real difficulty lies in finding a convenient labelling system for
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the various cubes. We commence with cubes over which W F has large

variance (i.e., close to 1.). Fix the dimension k , choose ctc(I, j),

X > 1, and set y- c 2 /(2kX2 ) . Let 1 (l..land let xIkbe

such that also x+ylc I k. Then the uniformity of the marginals of

F implies

(4.17) F(x+Yl) <F(x) + Tic F(x) + a/22

Now consider the lattice of points of the form y(nis...snk)I

-1where ni 0 ,l,...,[y 1. Then each of these points has a unique

expression as p + jyj where pen and wr is the set of y(n1 , ....n k)

with min{n : 1 < i < k) 0 .For each pew define, inductively,

j1il(p) max{j: F(p+jyj) <ea)

-i -ip max~j: F(p + jyl) -F(p + j 1 YI) :S a 2 /(2X2 )*__

Furthermore, define

3- 3(p) -min{i: F(p + j P> 1-ca).

Note that (4.17) implies J4J_ 2.1 for all i and p. Also, for

1 < J, <

(4.18) 0 < at - /(2X 2 ) cF(p + .iiYi) I a c + ct2 /(2X 2 ) < 1

Now set J*(p) -j 3  -1, and define
(P)

J*(p)
S(P) -U [x: p + (j, k)yj .1 x < p + (j, + kc + l)yjl,.

k-O

and
3(p)-i

S*(p) -U {:pjy
i x- +Ji x p J~l1I



30 S

(Drawing a picture for k=2 will undoubtedly make the following argument

appear more natural.) From the definitions of S and S* it is clear

that

(X: a <F(x) < I a) c U S(p) C U S*(p) .
pcf pci 0

Thus, with A as at (4.5)

(4.18) P{sup(W (x): a < F(x) < l-c) > A)
F _

< P{sup(W (X): xcS*(p) for some pcir) > .}

J(p)-liE E. £ p{A(p+j iYl , p+ji+iyl, X) I

pcW i=l

J(p)-i
< 0( E. Xlexp[-X2/2o2(p+jiyl)])

the last inequality following from Lemma 4.2. Now note that for all i, p,

F(p + Ji+2T  - F(p + Jiyl) > 02/2X2

and set I =min{i: ;I icx2 /2X 2 < a} - inni: 1 + ict2/2X 2 > 1 alc. Then

it follows that the sequence

(4.19) {02 (p+jiYjl): i-l,..., J(p) }

is dominated by the sequence

(4.20) {ao,a,a,ao,al,... a,a,a,a,. ,a,aI,ai~aI}"- "

i n w i c h ( i 2 / 2 X 2 ) 2 " " " '
In which a a , where by "domination" we mean that the

elements of (4.20) may be rearranged so that, teramise, they dominate

corresponding elements of (4.19). Furthermore, there may also be more terms

.'S','',
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in (4.20) than in (4.19). As a consequence of this we have that

J(p)-1 a- j0
r -exp[-X2/2O2(P+JY)]

E A -exp[x2/2 i2/2X) 2):

< 4 Alexp[-2XA2(1+(ic,2/X2)2) ]

i-i

4e-  E X exp[-2a4i2/X
2]

j=1

2 4
- e-2 0(fe-2a Ydy)

0 "

O(e-2x 2

2kX2/a2k - l  OC 2 (k'-1), -

Note that w has at most (2 + 2k=2/a2) 0( A ) points. Combining

this fact, the above, (4.18) and Lemma 4.3 yields

P{sup WF(x) > X -

F0

< P{sup(W (x): a < F(x) < l-a) > X) + P{sup(WF(x): F(x) < a

F

or F(x) > 1-a) > A)

2(k-1) -2A 2 + 2SX2

iO(X e )+0(e )

2(k-l) -2X2
mO(A e ).

This completes the proof of Theorem 4.1.

Proof of Theorem 4.2 Our aim here will be to attempt to mimick the proof

of the two-dimnsional case, Theorem 3.2, by comparing WF to W • However,
£' .=o = '

S .

.. -'.. -'
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for k > 2 dimensions the mapping on which the comparison is based is

definable as a linear mapping only in an arbitrarily small neighbourhood 0

of the point xo  of the theorem, and we shall not be able to say any-

thing concrete about the size of the neighbourhood, and thus, a fortiori,

anything non-asymptotic about the lower bound that we shall obtain.

The first part of the proof carefully sets up some geometrical

structures, and is totally non-probabilistic. Probability will enter only

when the groundwork is ready.

k
Let G be the uniform distribution on I, and y* the point

( )l/k .Then G(y*) and

(4.21) y : = - (y*) - ( (k-1)/k

Note that y is independent of i. In order to compare F to G, it is

convenient to consider new coordinate systems for F and G , obtained

by rotation and translation. To this end, let iF < i, ,Fk >, and

write y interchangeably for the constant (4.21) and the constant vector

4l . Define the unit vectors, with j . now denoting the usual Euclidean norm,

v = , Wi- -i•y.

and extend to two orthonormal bases V: = (V ...,V} and W: = {Wl,...,Wk}
1~ kk

k
for R Choose the origins of the new spaces to be x* and y*, res-

pectively. Then if v(x) and w(y) are, respectively, the representations

of x and y in the new coordinate systems, we have

v(x*) - 0, v1(x) - ,'(x-x)/I:

w(y*) 0 0, w (Y) = i'(y-y*) Y, "(y-y*)I ..Y

..9 .. ,
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The d.f.'s F and G can be transferred in a natural fashion

to V and W space, respectively. Let F and G be the corresponding .

functions, defined by

F(v(x)) F(x), G(w(y)) G(y)

(Note that F and C are not necessarily d.f.'s on V and W space.)

V WNow define maps Tr and 11 from V and W space, respectively, to the

original domains of F and F, by

T (v(x)) = x-x*, f (w(y)) y-y*

V . .
Thus, 'r and Iw transform from the coordinate systems of the V and

W spaces to systems cente-ed at x* and y* but oriented like the

original cartesian system.

We shall need to impose on the V and W spaces concepts of

ordering inherited from the original spaces. To this end, write

v( I < v(2 ) v- i(v ( I )) < i V(v ( 2) )  iI, ... ,k , Jq-...

(1) (2) lw((1) w (2)) :--
w <<w <-> r (w )< F(w ,il..,," - ' "

and define v(1) 9 V(2) and w I  w( 2 ) accordingly.

This completes the necessary geometrical groundwork. We now build

the mapping upon which the comparison between F and C will be based.

Let

v P.max{(i:i=l"... k}

min{* ,i=l -  .... - p + 2a.,

Define the mapping m (ml,...,mk) from a neighbourhood of zero in W .

space to a neighbourhood of zero in V space, via its coordinate mappings,

by firstly setting

• -°° ° .S



340

,.. :•-

(4.22) m(w )  i c nnwa, a c2,...i,kon-o

and then choosing Tw) such that

(4.23) Fm()) G(W)----

We need to check that m is, in factwell defined. For w , "

L R2...,k, and general win G(w) is clearly strictly increasing as

ofunction of w.l Furthermore since the unit vector V of the V

space has, as a vector in the original space, strictly positive coordinates,

It follows that F(vw,O,...,O) is strictly increasing as a function of

ve o Since F(O) s(a) it follows that m is well defined for w

of the form (WlO,...,0). The implicit function theorem now defines :""'"''

Couniquely for sufficiently small neighbourhoods.

Having defined our mapping, let us consider some of its properties.

Note that for small neighbourhoods of the origin

a.(w) - + IIYIl + o(llwll __P_-

(42) M() - + (IvI Ilvl)- -

Nowbnn l ths at beh(.2, 42) n the lineitio map aprxmtn m;ie. e

(4.265) ql[(w ) -W1 () - Owi -2,...,kIIi-~l]



35 0*7

Then by (4.25), for small w

% (4.27) I[m(w)-m(w2)J [q(w')-q(w2)]l < I Iw-w211.

Finally, note that as a consequence of (4.28) we also have

(4.2) ((l)-m(w2) - (q(wI)-q(w2))) _ w Iwl1.

This completes our listing of properties of m and its linear

approximation. We can now turn to the final part of the proof, the

comparison of WF and WG , which we commence by comparing F and G.

Firstly, let N be a small enough neighbourhood of zero in W

i 1 2
space so that (4.24) - (4.28) are true for w eN. Take w w eN

1 2
with w Aw £N Suppose

(4.29) vlV 2 = wp  for p i or 2

Then

(4.30) F(m(wI )m(w ) )2 F(m(w)) F(m(w 2))

G(w ) A G(w )

-G(w )

G(w 1 W-

Now consider the case w = w1 * w2 . w for either p 1 or 2. We

shall obtain (4.30) also for this case, but with inequality replacing the

S3 1 2equality. For each coordinate j-l, ...,k, w w w implies that

T(w) - ( -( = 0 or Ir(w2) - i(w 3 ) = 0

Fix J, and let p: = p(J) 1 1 or 2 be such that

(4. 3 1)' 
.(w -(w 0
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Thus w wp (l) ... p(k)>. Rewrite 'q as0

q(w) OwB + (p-O)w Vi

and apply this to (4.31) with w w -w 3to obtain, via the linearity

of V

(4.32) Ir (q (w -w) _ 2c(w~ w) '1(V,).
3

Now note, from the definition of w1  and since wm >> w

- 3 - 2W( 3 )/,V > flwp -
3 11,i

Furthermore, t follows from the definition-of V and a that

1 V w(V ) > Va O.

Substituting the above two inequalities into (4.32) yields

Combining this with (4.28) thus yields

(4.33) lT'W(m(wp) -M~w~)

However, what we have just shown is that for every j 1..

1 2
there is a p - p(j) satisfying (4.33). Consequently, for every w ,w c N

with w' 1 w2 c N, it follows that

Mw1 2 ( 1 (2
>>w ) M~ )

from which it follows that

2 - 1 2(4.34) i(m(w') m(w )< P (m(w --w
-1 2

G(w ~w
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Combining this with (4.30) we find that the above inequality holds for

all w w2 EN' where N' c N is a neighbourhood of zero such that wI 2 eNall- , w, ,w cNb "
1  2

implies w w eN, and, consequently, that (4.34) holds.

To obtain the final comparison between F and C, we need to

return to the original coordinate system. However, this is now easy,

for since the "minimum" relationship in (4.34) is really that of the

original coordinate system it trivially follows that via m we have con-

structed a map, say m*, from some neighbourhood N* of y* to a neigh-

bourhood m*(N*) of x* satisfying

F(m*(y)) = G(y) yEN*

1 2 1 2 12 *
F(m*(y ) A m,(y2)) = G(y A y), y Ay e N

Slepian's inequality now yields S

(4.35) P{sup W x) > X1 > P{sup WW(x) >
ik Fm(N*)

> P{sup WG(y) > X)
N*

> P{sup W0 (y) > X),
B6

where 6 is chosen small enough so that B : = [( )i/k_6,( )l/k+d]kC N*

(Note that 6 depends on N*, and so on F.) Thus, to complete the proof,

we need only find a lower bound for the last probability.

kTake e =  (26) , and consider the d.f. F of Section 2 on A

Map yeB to zcA according to the coordinate mappings

z= zi(Y) = + (2 6 )k- 1 y ()i /k I

S. "."-
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Then it is straightforward to check that for yeB 6

(4.36) F (z(y)) -G(y)

1 2 1 2
Furthermore, if y ,y c B then y A y CBS, and

(4.37) Z(Y1  Y y)-Z(y) A z(y)

Consequently,

P{sup WG(y) > X) P(supF (Z) > Xl.
B6  A~

But this last probability-is known, and is bounded from below in

Theorem 2.2 by cX 2 (l e2  
. Cobining this with (4.36) completes

the proof of the theorem.
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5. AN UPPER-LOWER CLASS THEOREM

We now return to the one-sided KS statistic T~k of the intro-. *-n
duction, and study the way it grows with n. In a fundamental paper ". -

treating the one-dimensional case Chung (1949) proved the following result

for a sequence X(n) f '

(5.1) P{T (1) > X(n) infinitely often} = 0(l)
n

if
(5.2) E e2  n  < -C ( -) ....-

n
n -n • .. ..".

Kiefer (1961) obtained a weaker version of.Chung's result for the multi-

variate case, and proved the following LIL for every k and continuous

F:

(k)(kT T (k)
(53 P~lim sup n 11) P{lim. inf n -- 1

n- ( log log n) n 4- ( log log n)

Kiefer's proof of (5.3) was based on inequality (1.3), which is not fine .

enough to pick up the higher iterated logarithm terms that (5.2) yields.

Having improved on Kiefer's inequality in the previous sections (at least

insofar as the limit process WF is concerned) we can now complete the

task Kiefer began and obtain a multi-dimensional analogue of (5.1).

Unlike Chung's and Kiefer's basic inequalities for P(Tn > A), we . .

have only inequalities for P{sup WF(x) > X), and so we shall need to
x k

proceed via an embeading theorem. To this end, for continuous F on -

define the Kiefer process as the C[ol -valued, real parameter process •

t >0, satisfying:

. .
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(5.4) P(K l CAI P(WrLA).

(5.5) P(K eA} = P{K ) - P KeA}, for t >a
t-) s-. "A P C -

(5.6) (K -K) and K are independent for all t > s > u

kHere A is any Borel subset of C[O,1] with topology generated

kby the sup norm Ilk!I = sup{ Ik(t) I: tcl k. Then Theorem 7.1 of Dudley

and Philipp (1983) implies the following embedding theorem, which is a

strengthening of an earlier result of Kiefer (1972)

Theorem 5.1 (Dudley-Phillip) Let X,X2,... be an infinite sequence of

i.i.d.r.v.'s, defined on an infinite product space (R, B=, P)

with common d.f. F. Let (9, E, Pr) be the product of (R , B ,P =) and a

copy of the unit interval with Lebesque measure. Let F be the empirical
-n

d.f. based on X1,...,X . Then, for every 0 > 0 there exists a Kiefer

process Kt, t > 0, defined on a, such that

(5.7) supIn[F (x) - F(x) - K (x) < 0(n (log n) - )

with Pr probability one.

As an immediate consequence of this result, along with a LIL for

sums of Banach space random variables, it is now easy to obtain Kiefer's

LIL, (5.3). (c.f. Kuelbs and Philipp (1980) and Goodman, Kuelbs and

Zinn (1981), esp. Theorem 6.1). Indeed, the Banach space results

yield much more than (5.3), for they also identify the cluster points of

F in CL0,1Jk in terms of the unit ball of a certain Hilbert space. Itn
is not possible, however, to follow this path to obtain a multivariate

E -IL-.
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version of Chung's upper-lower class theorem,. the problem being that no .

appropriate upper-lower class theorem is known for K. (Note that

whereas Kuelbs (1975) does have a result of'this type for Kt it is

not applicable here, since it gives results not for the growth of IIKtII -

b ut the growth o f!IKtI where jI is another unspe ci fied norm .

(albeit equivalent to the sup norm).) Consequently we shall have to revert

to an almost basic principles analysis to obtain a generalization of

Chung's theorem.

To state our result, we shall say a non-negative, non-decreasing,

continuous function V(t) defined for large values of t is a lower

function for {Kt, t > 01 if

(5.8) P(I IKI >n *(n) for an unbounded set of n's) -1,.-

and an upper function for {K : t > 01 if
t -

(5.9) P{IIKtt1 > t*(t) for only a bounded set of t's} = 1. -..-... 

Since the definition of Kt is dependent on F, whether or not any given

*is a lower or upper function depends on F as well as *. Thus we

write .(f) and VJU(F), respectively, to denote this dependency.

Note that (5.8) implies the weaker condition,

P(lII 1 > t *(t) for an unbounded set of t's} = 1

which is usually taken as the definition of a lower function. However,

the stronger result (5.8) is what is needed to apply Theorem (5.1),

and since our proof will be strong enough to prove (5.8) we use it to

define the notion of lower class. We can now state

o-.9-'%'°

*. o
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Theorem 5.2 Let F be continuous on I kwith uniform marginals. For

*as above, set

*2k~t~-2* 2 (t)
(MO0) 1M fe dt

if I k(P < ~,then #pU(F).. Furthermore, if F satisfies the conditions

of Theorem 4.2, and I(P othen #pL(F).

A simple argument, dating back at least to Erdos (1942) and spelled

out in detail in Sirao (1959), shows that there is no loss of generality

in Theorem 5.2 in assuming that for large t

(5.11) (klog log t) < ip(t) :i (log log t)

Furthermore, a straightforward application of the Abel-Dini theorem "-asily

yields the following corollary. __

Corollary 5.1 Let p.1 3 be integral, and define

*k,6(t) 2-1 [log2 t+(k+l) log3t+log 4t+. . +(l+6)logp1(t)

Then 6 >0 implies 1 k,k6) < C and 6 < 0 implies '(k6

so that l~,c() i 0 and Vk6 EcL(F) if 6 < 0 and F satisfies

the conditions of Theorem 4.2.

As a further consequence of (5.11) and Theorem 5.1 we can also

derive ts-e following corollary of Theorem 5.2, which generalises Chung' s

uni-variate test:
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Corollaiy5.2 For all F, -

P{T~k > *p(n) i.o.} 0 if 2~ E2 e 2( <

For F satisfying the conditions of Theorem 4.2

(k) 2k
P{T > *(n) i.o.1 1 if E

This result, of course, implies Kiefer's LIL, (5.3). All that nowd

remains is the

Proof of Theorem 5.2. We consider the convergent case first, i.e., 1k6(') < CO

Define a sequence t nsatisfying

-2(5.12) t n 1= t n(l-hp (t n))

where t1 > 3 is sufficiently large so that (5.11) holds for t >t9

and so hint -co. Set I- [t 't and
n n n' n+l

n'

Then, applying the Banach space version of Levy'a inequality, we have

P( 2sP(suIK. I I > t i(t )

n~

Now apply the scaling law (5.5), and Theoremi 4.1 to obtain
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--l 2 -2)
since t t Cad(t /t, )(l+4] (t)) >*2 )t) t fo

hn n n n+1

large enough n.

To complete the proof it is clearly sufficient to show EP[A}
i n

converges. But

Got 2kl)2pt) t
Z P{A I<C E f n[( 2*(t-)ie 2tn n~ ds;
nl n tn- n- n-i

< ' ~t)~ e ''"ds

n t 1  n-i t -

.cf Wke d2 sd
0

kM.

*the last inequality from the definition of t and the ultimate mono-
o 2k -2W9(S)k

tonicity ofs* e .By assumption I k~~ and so the proof

of the convergent part of the theorem is complete.

Now assume 1 0) = .Let a~ (log ni) 2

a and t =Jn > 2. Also set

n -1 nnl

(l-+t t ) On2
n n+l

n + -> 0,n >9
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Following Chung's (1949) argument, set

H {K 1,1 <t
n

Hnu,n+i {1IK t -K t > (1+e )(t -t n) 1(t ~l
n+l nf 1 n

Then, if both H and Hoccur, we have
n Rn,n+1

IKt I' I (l+n)(tn ftnk 4(t+ 1  t*(t)
n+1

t~ n*(tn+l)

That is, H -Hn -i> Hn~ Thus, noting from (5.6) that Hn i

and H are independent for m < n, it follows that
m

n n1
P{ I H}.fH }P{ w H *lH }

m n,n+1 m n+1

That is

n+1 n
P( if H}P{ ir H (1-P{H

m- - m n,n+l

~P{H2 } 71 (1-P{H 1)
2r' M,M4-

Clearly, then, if we can show Z P{H *- we will have proven the
n-.2 n,n+l

theorem. Applying Theorem 4.2 and (5.5) we have
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(51) P{H I> C (l+c)2 (k-1) P(t+J)J]2 (k-1) ex {-2 *2(t 1 ( e 2

n,n+1

Consider the exponent, and note that

1 n+ 1 1-~ 1 1n+, (1n n+1
n+1 + n+1 n+1 n +0

Consequently

2 -2

so that, by (5.11),

*2(t~ ~ M+ 2 2 (t~ 1  + (log log 0 4/ai)

n+1
log E log2m

*2 i(t+l) +
4 log2 (n+1)

<4P2 (t + +1,
- n+1

1+/n
for large enough n. Substituting into (5.13) and setting (c+i

yields

EP{H I> C E [*(t))2(k-1) e-2*2 n

n ,n+lU

n ~ n

]2(k-12k -2 *2 (t n
>cf F~s1 e n n d

n U

2k -2iF2 12k

since (t)e is eventually decreasing in t. A change of variables

leads-to
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where

* (5.14) a
fi nf

If we can now show that a is bounded away from zero for large enoughn

n *we shall have }P{ > CI~(4) m and the proof will be complete.

Firstly, note that by (5.11)

nn
(5.15) 0,2(o ) log log ( ir log2M) mlog E log (log2m))

m-2 m-2

< log ((n-2)2log log n)

< 2 log n.

Furthermore

2 -1
(5.16) a/y-) -)-r(log n+l)-i

U n.ncn > cn/ On+lCn) (log n) 2

> FloR n-Ii
-Llog n

Substituting (5.15) and (5.16) into (5.14) yields

a > [ n(log(n + 1)- log n)A-

[n' L log (1+1/)

which completes the proof of the theorem.
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